自旋
对于一维谐振子问题,其哈密顿量可以表示为 \(H = \frac{p^2}{2} + \frac{1}{2}\omega^2 x^2\)。我们的目标是求解其能量本征方程 \(H\varphi = E\varphi\)。为了用一种更简洁的代数方法求解,我们引入一对阶梯算符,定义为: \[ a^{\pm} = \frac{p \pm i\omega x}{\sqrt{2\omega}} \] 其中 \(a^+\) 通常被称为创生算符 \(a^\dagger\),而 \(a^-\) 被称为湮灭算符 \(a\)。通过这些算符,我们可以将哈密顿量表达成一个更简洁的形式。我们定义粒子数算符为 \(N = a^\dagger a\)。经过推导可以发现,哈密顿量与粒子数算符的关系为: \[ H = \omega \left(N + \frac{1}{2}\right) \] 这个形式极大地简化了问题的求解过程。 直接求解谐振子的薛定谔方程是一个二阶常微分方程,过程较为繁琐。狄拉克发明了一种更深刻的代数方法,其核心思想是尝试对哈密顿算符 \(H\) 进行“因式分解”。哈密顿量 \(H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2\) 在自然单位制(令 \(m=1, \hbar=1\))下为 \(H = \frac{p^2}{2} + \frac{1}{2}\omega^2 x^2\),这个形式很像平方和 \(A^2+B^2\)。虽然在量子力学中位置算符 \(x\) 和动量算符 \(p\) 不对易(\([x, p] = i\)),不能像普通数字一样直接分解,但这个思路启发我们去构造一对互为厄米共轭的算符 \(a\) 和 \(a^\dagger\),使得 \(H\) 能用它们的乘积 \(a^\dagger a\) 来简洁地表达。这对算符就是我们之前引入的升降算符。 ...